1	(1)	Since $\triangle ABC$ is a right-angled triangle with $\angle BCA = 90^{\circ}$, using the Pythagorean theorem, we have $AB^{2} = AC^{2} + BC^{2}$ $= 6^{2} + 4^{2}$ $= 36 + 16$ $= 52.$ Since $AB > 0$, $AB = 2\sqrt{13}$ cm.
		(Answer) $2\sqrt{13}$ cm
	(2)	(Answer) $\sqrt{26}$ cm
2	(3)	
3	(4)	(Answer) 28
		The Mathematics Certification Institute of Japan

	(5)	(Answer) 0.899
4	(6)	Since $\triangle ABC$ is a right-angled triangle with $\angle ABC = 90^{\circ}$, we have $\tan 36^{\circ} = \frac{AB}{BC}.$ Hence, we obtain $AB = BC \tan 36^{\circ}$ $= 50 \times 0.7265$ $= 36.325$ $\approx 36.3 \text{ (m)}.$ (Answer) 36.3 m
5	(7)	Let <i>D</i> be the discriminant of the quadratic equation $x^{2} + (1-3a)x + a^{2} - a + 1 = 0$. (*) Since (*) has two distinct real roots, <i>D</i> > 0. Since $D = (1-3a)^{2} - 4 \cdot 1 \cdot (a^{2} - a + 1)$ $= (1-6a + 9a^{2}) + (-4a^{2} + 4a - 4)$ $= 5a^{2} - 2a - 3$, we have $5a^{2} - 2a - 3 > 0$ (a - 1)(5a + 3) > 0 $a < -\frac{3}{5}, 1 < a$. (Answer) $a < -\frac{3}{5}, 1 < a$
	(8)	(Answer) $\frac{1}{400}$
6	(9)	When a player has three chances successively, let A be the event "the player gets three items Cs". Then, the event "the player gets at least one item A or B" is the complementary event of A , which is \overline{A} . The probability of occurring event A , denoted by $P(A)$, is $P(A) = \left(\frac{3}{4}\right)^3 = \frac{27}{64}$. Therefore, the required probability $P(\overline{A})$ is $P(\overline{A}) = 1 - P(A) = 1 - \frac{27}{64} = \frac{37}{64}$. (Answer) $\frac{37}{64}$
7	(10)	(Answer) 5

Г