

	(5)	(Answer) 0.899
4	(6)	Since $\triangle \mathrm{ABC}$ is a right-angled triangle with $\angle \mathrm{ABC}=90^{\circ}$, we have $\tan 36^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}} .$ Hence, we obtain $\begin{aligned} \mathrm{AB} & =\mathrm{BC} \tan 36^{\circ} \\ & =50 \times 0.7265 \\ & =36.325 \\ & \approx 36.3(\mathrm{~m}) . \end{aligned}$ (Answer) 36.3 m
5	(7)	Let D be the discriminant of the quadratic equation $\begin{equation*} x^{2}+(1-3 a) x+a^{2}-a+1=0 . \tag{*} \end{equation*}$ Since $\left(^{*}\right)$ has two distinct real roots, $D>0$. Since $\begin{aligned} D & =(1-3 a)^{2}-4 \cdot 1 \cdot\left(a^{2}-a+1\right) \\ & =\left(1-6 a+9 a^{2}\right)+\left(-4 a^{2}+4 a-4\right) \\ & =5 a^{2}-2 a-3, \end{aligned}$ we have $\begin{aligned} & 5 a^{2}-2 a-3>0 \\ & (a-1)(5 a+3)>0 \\ & a<-\frac{3}{5}, 1<a . \end{aligned}$ (Answer) $a<-\frac{3}{5}, 1<a$
	(8)	(Answer) $\frac{1}{400}$
6	(9)	When a player has three chances successively, let A be the event "the player gets three items Cs". Then, the event "the player gets at least one item A or B " is the complementary event of A, which is \bar{A}. The probability of occurring event A, denoted by $P(A)$, is $P(A)=\left(\frac{3}{4}\right)^{3}=\frac{27}{64}$ Therefore, the required probability $P(\bar{A})$ is $P(\bar{A})=1-P(A)=1-\frac{27}{64}=\frac{37}{64} .$ (Answer) $\frac{37}{64}$
7	(10)	(Answer) 5

