

PROFICIENCY TEST IN PRACTICAL MATHEMATICS

Test Time : 60 minutes

Test Instructions –

- 1 . Make sure that you have the correct level (Kyu) test.
- 2. Do not open the booklet until you are told to do so.
- 3. Write your examinee number and name on this page.
- 4. Write your name, examinee number and other necessary information on the answer sheets.
- 5. Write only answers on the answer sheets provided.
- 6. You may not use a calculator, ruler or compass.
- 7. Turn off your cell phone and do not use it during the test.
- 8. Ask an examination supervisor if your problem sheets have inconsistent page numbering or missing pages.
- 9. It is prohibited to disclose the problems to the general public, such as on the Internet, without permission.

|--|

*Your personal information will be handled appropriately according to the "Handling of Personal Information" agreement that was approved at the time of registration.

[Pre-1st Kyu] Section 1: Calculation Test

1 Find the range of values of θ that satisfies the following inequality for $0 < \theta < \pi$.

 $\sqrt{3}\tan^2\theta + (\sqrt{3}-1)\tan\theta - 1 < 0$

2 Let r be a positive real number. Find the range of values of r such that the two circles $(x-2)^2 + (y+1)^2 = 9$ and $(x+1)^2 + (y-3)^2 = r^2$ intersect at two distinct points.

3 Let
$$S_n = \sum_{k=1}^n 3^k$$
. Find the following sum.
$$\sum_{n=1}^6 S_n$$

- 4 Consider the two complex numbers z=1-i and $w=\sqrt{3}+i$. Note that *i* represents the imaginary unit.
 - ① Find the modulus of z^6w^3 .
 - ② Find the argument θ of $z^6 w^3$, where $0 \le \theta < 2\pi$.

- **5** Consider the function $f(x) = \cos x \sin 2x$.
 - (1) Find the derivative function f'(x).
 - (2) For the curve y = f(x) in the xy-plane, find the equation of the tangent line to the curve at the point $(\pi, f(\pi))$.

6 Find the coordinates of the focus of the parabola $y^2 - 12y = 12x$ in the xy-plane.

7 Evaluate the following limit.

$$\lim_{n\to\infty} \left(1 + \frac{5}{n}\right)^{2n}$$