$$
\begin{align*}
& x^{2}+2 x y-y^{2}+2 m x+(6-m) y+4=0 \tag{*}\\
& x^{2}+2(y+m) x-y^{2}+(6-m) y+4=0
\end{align*}
$$

Solving this equation for x gives

$$
\begin{align*}
x & =-(y+m) \pm \sqrt{(y+m)^{2}-\left\{-y^{2}+(6-m) y+4\right\}} \\
& =-y-m \pm \sqrt{2 y^{2}+3(m-2) y+m^{2}-4 .} \quad(* *) \tag{**}
\end{align*}
$$

If $\left({ }^{*}\right)$ represents two lines in the $x y$-plane, the value inside the radical in $(* *), 2 y^{2}+3(m-2) y+m^{2}-4$, must be expressed in the form $(a y+b)^{2}$, where a and b are real numbers.
It follows that the discriminant D of the quadratic equation $2 y^{2}+3(m-2) y+m^{2}-4=0$ must be 0 .
Since

$$
\begin{aligned}
D & =9(m-2)^{2}-8\left(m^{2}-4\right) \\
& =m^{2}-36 m+68 \\
& =(m-2)(m-34),
\end{aligned}
$$

we have $m=2,34$.
Conversely, for $m=2,(*)$ becomes

$$
\begin{align*}
& x^{2}+2 x y-y^{2}+4 x+4 y+4=0 \\
& \{x+(1+\sqrt{2}) y+2\}\{x+(1-\sqrt{2}) y+2\}=0 . \tag{***}
\end{align*}
$$

Hence, $\left({ }^{* * *}\right)$ represents the lines

$$
x+(1+\sqrt{2}) y+2=0 \text { and } x+(1-\sqrt{2}) y+2=0 .
$$

For $m=34,\left(^{*}\right)$ becomes

$$
\begin{align*}
& x^{2}+2 x y-y^{2}+68 x-28 y+4=0 \\
& \{x+(1+\sqrt{2}) y+34+24 \sqrt{2}\}\{x+(1-\sqrt{2}) y+34-24 \sqrt{2}\}=0 . \tag{****}
\end{align*}
$$

Hence, $\left({ }^{* * * *)}\right.$ represents the lines

$$
x+(1+\sqrt{2}) y+34+24 \sqrt{2}=0 \text { and } x+(1-\sqrt{2}) y+34-24 \sqrt{2}=0 .
$$

Therefore, the required value of m is 2 or 34 .
(1)

$$
\begin{aligned}
& \frac{a_{n} a_{n+1}-2 a_{n} a_{n+2}+a_{n+1} a_{n+2}}{a_{n} a_{n+1} a_{n+2}}=n \\
& \frac{1}{a_{n+2}}-\frac{2}{a_{n+1}}+\frac{1}{a_{n}}=n \\
& \frac{1}{a_{n+2}}-\frac{1}{a_{n+1}}-\left(\frac{1}{a_{n+1}}-\frac{1}{a_{n}}\right)=n .
\end{aligned}
$$

Since $b_{n}=\frac{1}{a_{n+1}}-\frac{1}{a_{n}}$, we have

$$
b_{n+1}-b_{n}=n
$$

(Answer) $b_{n+1}-b_{n}=n$
(2) We have $b_{1}=\frac{1}{a_{2}}-\frac{1}{a_{1}}=0$. Since $b_{n+1}-b_{n}=n$, for $n \geq 2$, we have

$$
\begin{align*}
b_{n} & =b_{1}+\sum_{k=1}^{n-1} k \\
& =\frac{1}{2}(n-1) n \\
& =\frac{1}{2}\left(n^{2}-n\right) . \tag{*}
\end{align*}
$$

For $n=1$, the value of $\left({ }^{*}\right)$ is $\frac{1}{2}\left(1^{2}-1\right)=0=b_{1}$. Hence, $\left(^{*}\right)$ holds for $n=1$. Hence, we have

$$
\frac{1}{a_{n+1}}-\frac{1}{a_{n}}=\frac{1}{2}\left(n^{2}-n\right)
$$

For $n \geq 2$, we have

$$
\begin{aligned}
\frac{1}{a_{n}} & =\frac{1}{a_{1}}+\sum_{k=1}^{n-1} \frac{1}{2}\left(k^{2}-k\right) \\
& =1+\frac{1}{2}\left\{\frac{1}{6}(n-1) n(2 n-1)-\frac{1}{2}(n-1) n\right\} \\
& =\frac{n^{3}-3 n^{2}+2 n+6}{6}
\end{aligned}
$$

Since $n^{3}-3 n^{2}+2 n+6=n(n-1)(n-2)+6>0$, we obtain

$$
\begin{equation*}
a_{n}=\frac{6}{n^{3}-3 n^{2}+2 n+6} \tag{**}
\end{equation*}
$$

For $n=1$, the value of $\left({ }^{* *}\right)$ is $\frac{6}{1^{3}-3 \cdot 1^{2}+2 \cdot 1+6}=1=a_{1}$. Hence, $\left({ }^{* *}\right)$ holds for $n=1$.
Therefore, for all positive integers n, we have $a_{n}=\frac{6}{n^{3}-3 n^{2}+2 n+6}$.

$$
\text { (Answer) } a_{n}=\frac{6}{n^{3}-3 n^{2}+2 n+6}
$$

3
(1) $f(g(x))=\frac{g(x)+1}{2 g(x)+3}=\frac{\frac{a x+b}{c x+d}+1}{2 \cdot \frac{a x+b}{c x+d}+3}=\frac{(a+c) x+b+d}{(2 a+3 c) x+2 b+3 d}$.

If $f(g(x))=x+1$ is an identity in x, then

$$
(a+c) x+b+d=(2 a+3 c) x^{2}+(2 a+2 b+3 c+3 d) x+2 b+3 d
$$

is also an identity in x.
Equating the coefficients, we have

$$
0=2 a+3 c, \quad a+c=2 a+2 b+3 c+3 d, \quad b+d=2 b+3 d .
$$

Hence, we have $a=-3 d, b=-2 d$ and $c=2 d(d \neq 0)$. Therefore, we obtain

$$
g(x)=\frac{-3 d x-2 d}{2 d x+d}=-\frac{3 x+2}{2 x+1} .
$$

$$
\text { (Answer) } g(x)=-\frac{3 x+2}{2 x+1}
$$

(2) $g(f(x))=\frac{a f(x)+b}{c f(x)+d}=\frac{a \cdot \frac{x+1}{2 x+3}+b}{c \cdot \frac{x+1}{2 x+3}+d}=\frac{(a+2 b) x+a+3 b}{(c+2 d) x+c+3 d}$.

If $g(f(x))=x+1$ is an identity in x, then

$$
(a+2 b) x+a+3 b=(c+2 d) x^{2}+(2 c+5 d) x+c+3 d
$$

is also an identity in x.
Equating the coefficients, we have

$$
0=c+2 d, a+2 b=2 c+5 d, a+3 b=c+3 d .
$$

Hence, we have $a=d, b=0$ and $c=-2 d \quad(d \neq 0)$. Therefore, we obtain

$$
g(x)=\frac{d x}{-2 d x+d}=\frac{x}{1-2 x} .
$$

(Answer) $g(x)=\frac{x}{1-2 x}$
(1) (Answer) $3<x \leq 5$
(2) Since $\frac{x-3}{2}=\frac{2 t}{t^{2}+1}$ and $y=\frac{1-t^{2}}{t^{2}+1}$, we have

$$
\left(\frac{x-3}{2}\right)^{2}+y^{2}=\left(\frac{2 t}{t^{2}+1}\right)^{2}+\left(\frac{1-t^{2}}{t^{2}+1}\right)^{2}=1 .
$$

It follows that

$$
\frac{(x-3)^{2}}{4}+y^{2}=1
$$

From the answer in (1), the locus of point P is a portion of the ellipse $\frac{(x-3)^{2}}{4}+y^{2}=1$ for $3<x \leq 5$.
(Answer) Portion of the ellipse $\frac{(x-3)^{2}}{4}+y^{2}=1$ for $3<x \leq 5$

5 (1) The union of $3 k(k>0), 3 k+1(k \geq 0)$ and $3 k+2(k \geq 0)$ contains all positive integers. Hence, there exists n such that $f(n)=N$ for an arbitrary positive integer N.
We prove that exactly one n exists for an arbitrary positive integer N. The remainders when dividing each of $3 k, 3 k+1$ and $3 k+2$ by 3 are distinct, and if $3 k=3 k^{\prime}, 3 k+1=3 k^{\prime}+1$ or $3 k+2=3 k^{\prime}+2$, then $k=k^{\prime}$. Hence, we see that if $f(n)=f\left(n^{\prime}\right)$, then $n=n^{\prime}$. It follows that if there is n such that $f(n)=N$, there must be exactly one n.
Therefore, there is exactly one n such that $f(n)=N$ for an arbitrary positive integer N.
(2) For one-digit positive integers, we have

$$
\begin{aligned}
& 1 \rightarrow 1 \rightarrow 1 \rightarrow \cdots, \\
& 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow \cdots, \\
& 4 \rightarrow 6 \rightarrow 9 \rightarrow 7 \rightarrow 5 \rightarrow 4 \rightarrow 6 \rightarrow 9 \rightarrow 7 \rightarrow 5 \rightarrow \cdots .
\end{aligned}
$$

Therefore, there is no number that leads to 8 or comes from 8 .
(Answer) 0
(3) (Answer) $m=73$
(1) Since $\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{BC}}$, we have

$$
\overrightarrow{\mathrm{OD}}=\vec{a}-\vec{b}+\vec{c}
$$

For square pyramid $\mathrm{O}-\mathrm{ABCD}$, drawing perpendicular line OI from point O to base ABCD , we have

$$
\overrightarrow{\mathrm{ON}}=\frac{|\overrightarrow{\mathrm{OI}}|+|\overrightarrow{\mathrm{AE}}|}{|\overrightarrow{\mathrm{OI}}|} \overrightarrow{\mathrm{OI}}
$$

Since $\overrightarrow{\mathrm{OI}}=\frac{\vec{a}+\vec{c}}{2},|\overrightarrow{\mathrm{OI}}|=\sqrt{2}$ and $|\overrightarrow{\mathrm{AE}}|=2$, we obtain

$$
\begin{aligned}
\overrightarrow{\mathrm{ON}} & =\frac{\sqrt{2}+2}{\sqrt{2}}\left(\frac{\vec{a}+\vec{c}}{2}\right) \\
& =\frac{1+\sqrt{2}}{2}(\vec{a}+\vec{c}) .
\end{aligned}
$$

(Answer) $\overrightarrow{\mathrm{OD}}=\vec{a}-\vec{b}+\vec{c}, \overrightarrow{\mathrm{ON}}=\frac{1+\sqrt{2}}{2}(\vec{a}+\vec{c})$
(2) Since point P lies on line MN , there is a real number t such that

$$
\begin{aligned}
\overrightarrow{\mathrm{OP}} & =(1-t) \overrightarrow{\mathrm{OM}}+t \overrightarrow{\mathrm{ON}} \\
& =\frac{1-t}{2} \overrightarrow{\mathrm{OD}}+t \overrightarrow{\mathrm{ON}} \\
& =\frac{1-t}{2}(\vec{a}-\vec{b}+\vec{c})+\frac{1+\sqrt{2}}{2} t(\vec{a}+\vec{c}) \\
& =\frac{1+\sqrt{2} t}{2} \vec{a}-\frac{1-t}{2} \vec{b}+\frac{1+\sqrt{2} t}{2} \vec{c} .
\end{aligned}
$$

Also, point P lies on the plane that passes through three points A, B and C , we have

$$
\begin{aligned}
& \frac{1+\sqrt{2} t}{2}-\frac{1-t}{2}+\frac{1+\sqrt{2} t}{2}=1 \\
& (2 \sqrt{2}+1) t=1 \\
& t=\frac{2 \sqrt{2}-1}{7}
\end{aligned}
$$

Therefore, we obtain

$$
\overrightarrow{\mathrm{OP}}=\frac{11-\sqrt{2}}{14} \vec{a}-\frac{4-\sqrt{2}}{7} \vec{b}+\frac{11-\sqrt{2}}{14} \vec{c} .
$$

(Answer) $\overrightarrow{\mathrm{OP}}=\frac{11-\sqrt{2}}{14} \vec{a}-\frac{4-\sqrt{2}}{7} \vec{b}+\frac{11-\sqrt{2}}{14} \vec{c}$

The coordinates of the points of intersection of the two curves satisfy the following system of equations.

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=4 \tag{1}\\
\frac{x^{2}}{2}+\frac{y^{2}}{6}=1
\end{array}\right.
$$

From (1)-(2) $\times 6$, we have

$$
\begin{aligned}
& -2 x^{2}=-2 \\
& x^{2}=1
\end{aligned}
$$

Hence, we have $y^{2}=3$.
Therefore, the coordinates of the points of intersection of the two curves are

$$
(1, \sqrt{3}), \quad(1,-\sqrt{3}), \quad(-1, \sqrt{3}), \quad(-1,-\sqrt{3})
$$

(1) and (2) can be expressed as

$$
\begin{align*}
& x^{2}=4-y^{2} \tag{3}\\
& x^{2}=2-\frac{y^{2}}{3} . \tag{4}
\end{align*}
$$

Using symmetry of the figure and (3) and (4), the required volume V is

$$
\begin{aligned}
V & =2\left\{\pi \int_{0}^{\sqrt{3}}\left(2-\frac{y^{2}}{3}\right) d y+\pi \int_{\sqrt{3}}^{2}\left(4-y^{2}\right) d y\right\} \\
& =2 \pi\left(\left[2 y-\frac{y^{3}}{9}\right]_{0}^{\sqrt{3}}+\left[4 y-\frac{y^{3}}{3}\right]_{\sqrt{3}}^{2}\right) \\
& =2 \pi\left\{2 \sqrt{3}-\frac{\sqrt{3}}{3}+\left(8-\frac{8}{3}\right)-(4 \sqrt{3}-\sqrt{3})\right\} \\
& =\frac{32-8 \sqrt{3}}{3} \pi
\end{aligned}
$$

