(1) (Answer) $S=\frac{\sqrt{3}}{4}\left(6 x^{2}+y^{2}\right)$
(2) Since the sum of the perimeters of A and B is a constant value L, we have

$$
\begin{align*}
& 6 x+3 y=L \\
& y=-2 x+\frac{L}{3} \tag{*}
\end{align*}
$$

Substituting $\left({ }^{*}\right)$ into $S=\frac{\sqrt{3}}{4}\left(6 x^{2}+y^{2}\right)$ gives

$$
\begin{aligned}
S & =\frac{\sqrt{3}}{4}\left\{6 x^{2}+\left(-2 x+\frac{L}{3}\right)^{2}\right\} \\
& =\frac{\sqrt{3}}{4}\left(10 x^{2}-\frac{4 L}{3} x+\frac{L^{2}}{9}\right) \\
& =\frac{5 \sqrt{3}}{2}\left(x^{2}-\frac{2 L}{15} x\right)+\frac{\sqrt{3}}{36} L^{2} \\
& =\frac{5 \sqrt{3}}{2}\left(x-\frac{L}{15}\right)^{2}-\frac{\sqrt{3}}{90} L^{2}+\frac{\sqrt{3}}{36} L^{2} \\
& =\frac{5 \sqrt{3}}{2}\left(x-\frac{L}{15}\right)^{2}+\frac{\sqrt{3}}{60} L^{2} .
\end{aligned}
$$

Hence, for $0<x<\frac{L}{6}, S$ has the minimum value
$\frac{\sqrt{3}}{60} L^{2} \quad$ at $\quad x=\frac{L}{15}$.
From (*), we have $y=\frac{L}{5}$. Therefore, we obtain

$$
\frac{y}{x}=3 .
$$

(Answer) Minimum value of S is $\frac{\sqrt{3}}{60} L^{2}, \frac{y}{x}=3$

2
(1) When a player has five chances successively, let A be the event "the player gets five items Cs". Then, the event "the player gets at least one item A or B " is the complementary event of A, which is \bar{A}.
The probability of occurring event A, denoted by $P(A)$, is

$$
P(A)=\left(\frac{3}{4}\right)^{5}=\frac{243}{1024}
$$

Hence, the required probability $P(\bar{A})$ is

$$
\begin{aligned}
P(\bar{A}) & =1-P(A) \\
& =1-\frac{243}{1024} \\
& =\frac{781}{1024} .
\end{aligned}
$$

(2) When a player has six chances successively, the number of ways of getting three items Cs, two items Bs and one item A is given by

$$
{ }_{6} \mathrm{C}_{3} \cdot{ }_{3} \mathrm{C}_{2} \text { ways. }
$$

Hence, the required probability is

$$
\begin{aligned}
& { }_{6} \mathrm{C}_{3} \cdot{ }_{3} \mathrm{C}_{2} \cdot\left(\frac{3}{4}\right)^{3} \cdot\left(\frac{1}{5}\right)^{2} \cdot \frac{1}{20} \\
= & 20 \cdot 3 \cdot \frac{27}{64} \cdot \frac{1}{25} \cdot \frac{1}{20} \\
= & \frac{81}{1600} .
\end{aligned}
$$

(Answer) $\frac{81}{1600}$
(1) In the figure, region D is the shaded part including the boundary lines.

(2) Letting $x+y=k$, we have

$$
\begin{equation*}
y=-x+k \tag{*}
\end{equation*}
$$

which represents a line with slope -1 and the y-intercept k.
Since the slope of the line $y=-2 x+6$ is -2 and the slope of the line $y=-\frac{2}{3} x+4$ is $-\frac{2}{3}, k$ has the maximum value if $(*)$ passes through the point of intersection $\left(\frac{3}{2}, 3\right)$ of the two lines
 $y=-2 x+6$ and $y=-\frac{2}{3} x+4$.

Therefore, k has the maximum value $\frac{9}{2}$ at $x=\frac{3}{2}$ and $y=3$.
(Answer) Maximum value $\frac{9}{2}$ at $x=\frac{3}{2}$ and $y=3$
(1) $a_{n}=18+12(n-1)=12 n+6$.

Hence, we have

$$
\begin{aligned}
b_{n} & =\sum_{k=1}^{n}(12 k+6) \\
& =12 \cdot \frac{n(n+1)}{2}+6 n \\
& =6 n^{2}+12 n .
\end{aligned}
$$

(Answer) $b_{n}=6 n^{2}+12 n$
(2) Since $b_{n}=6 n^{2}+12 n$, we have

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n}\left(6 k^{2}+12 k\right) \\
& =6 \cdot \frac{n(n+1)(2 n+1)}{6}+12 \cdot \frac{n(n+1)}{2} \\
& =n(n+1)(2 n+1)+6 n(n+1) \\
& =n(n+1)\{(2 n+1)+6\} \\
& =n(n+1)(2 n+7) .
\end{aligned}
$$

5 (Answer) The least number of operations 12. Maximum integer 111, minimum integer 44.
The Mathematics Certification Institute of Japan

6 Drawing a line from point B perpendicularly to line segment CD , we let H be the point of intersection. Since

$$
\angle \mathrm{HBE}=\angle \mathrm{DAB}=15^{\circ},
$$

we have

$$
\angle \mathrm{HBC}=\angle \mathrm{HBE}-\angle \mathrm{CBE}=6^{\circ} .
$$

Drawing a line from point B perpendicularly to line segment AD and letting I be the point of intersection, $\mathrm{BI}=\mathrm{HD}$.

Therefore, the required height of the ramp is

$$
\begin{aligned}
\mathrm{CD} & =\mathrm{CH}+\mathrm{HD} \\
& =\mathrm{CH}+\mathrm{BI} \\
& =\mathrm{BC} \sin 6^{\circ}+\mathrm{AB} \sin 15^{\circ} \\
& =22 \cdot 0.1045+30 \cdot 0.2588 \\
& =10.063 \\
& \approx 10.1(\mathrm{~m}) .
\end{aligned}
$$

Let

$$
\begin{equation*}
f(x)=a x^{2}+b x+c, \tag{3}
\end{equation*}
$$

where $a(a \neq 0), b$ and c are constants. Then we have

$$
\begin{equation*}
f^{\prime}(x)=2 a x+b . \tag{4}
\end{equation*}
$$

Substituting (3) and (4) into $(x-1) f^{\prime}(x)=2 f(x)+x-3$ gives

$$
\begin{aligned}
& (x-1)(2 a x+b)=2\left(a x^{2}+b x+c\right)+x-3 \\
& 2 a x^{2}+b x-2 a x-b=2 a x^{2}+2 b x+2 c+x-3 \\
& (2 a+b+1) x+(b+2 c-3)=0
\end{aligned}
$$

Since this must be an identity for x, equating the coefficients on both sides, we have

$$
\begin{align*}
& 2 a+b+1=0, \tag{5}\\
& b+2 c-3=0 . \tag{6}
\end{align*}
$$

From (2) and (4), we have

$$
\begin{equation*}
4 a+b=3 \text {. } \tag{7}
\end{equation*}
$$

Solving the system of equations (5) and (7) gives

$$
a=2, \quad b=-5 .
$$

Substituting $b=-5$ into (6) gives $c=4$.

Therefore, the required quadratic function is

$$
f(x)=2 x^{2}-5 x+4 .
$$

$$
\text { (Answer) } f(x)=2 x^{2}-5 x+4
$$

