1 (1) (Answer) 1932
(2) For the equation

$$
2273 a-1932 b=1 \text {, }
$$

we find one pair of positive integers a and b that satisfy the equation as follows:
Since

$$
\begin{aligned}
& 2273=1932 \cdot 1+341 \\
& 1932=341 \cdot 5+227 \\
& 341=227 \cdot 1+114 \\
& 227=114 \cdot 1+113 \\
& 114=113 \cdot 1+1,
\end{aligned}
$$

we have

$$
\begin{aligned}
1 & =114-113 \cdot 1 \\
& =114-(227-114 \cdot 1) \cdot 1 \\
& =227 \cdot(-1)+114 \cdot 2 \\
& =227 \cdot(-1)+(341-227 \cdot 1) \cdot 2 \\
& =341 \cdot 2+227 \cdot(-3) \\
& =341 \cdot 2+(1932-341 \cdot 5) \cdot(-3) \\
& =1932 \cdot(-3)+341 \cdot 17 \\
& =1932 \cdot(-3)+(2273-1932 \cdot 1) \cdot 17 \\
& =2273 \cdot 17-1932 \cdot 20 .
\end{aligned}
$$

Hence, the pair of $a=17$ and $b=20$ is one pair of integer solution.
Since 5 and $\varphi(2021)(=1932)$ are relatively prime, we have

$$
\begin{aligned}
& 5^{2273 a}=5^{1932 b+1} \\
& \left(5^{a}\right)^{2273}=\left(5^{\varphi(2021)}\right)^{b} \cdot 5 \\
& \left(5^{a}\right)^{2273} \equiv 5(\bmod 2021) .
\end{aligned}
$$

Since

$$
\begin{aligned}
5^{a} & =5^{10} \cdot 5^{7} \\
& \equiv 153 \cdot 1327(\bmod 2021) \\
& \equiv 931(\bmod 2021),
\end{aligned}
$$

we obtain

$$
x=931 \text {. }
$$

(1) (1) $\Gamma(t+1)=\int_{0}^{\infty} x^{t} e^{-x} d x=\left[-x^{t} e^{-x}\right]_{0}^{\infty}+t \int_{0}^{\infty} x^{t-1} e^{-x} d x=t \Gamma(t)$.
(2) Since $\Gamma(1)=\int_{0}^{\infty} e^{-x} d x=\left[-e^{-x}\right]_{0}^{\infty}=1$,
using (1) for a positive integer n, we have

$$
\Gamma(n+1)=n \Gamma(n)=n(n-1) \Gamma(n-1)=\ldots=n!\Gamma(1)=n!.
$$

(2) Letting $y=\log _{e} \frac{1}{t}$, since $t=e^{-y}$ and $\frac{d t}{d y}=-e^{-y}$, we have

$$
\int_{0}^{1} t^{3}\left(\log _{e} \frac{1}{t}\right)^{\frac{5}{2}} d t=\int_{\infty}^{0} e^{-3 y} y^{\frac{5}{2}}\left(-e^{-y}\right) d y=\int_{0}^{\infty} y^{\frac{5}{2}} e^{-4 y} d y .
$$

t	$0 \rightarrow 1$
y	$\infty \rightarrow 0$

Letting $x=4 y$, we have $y=\frac{x}{4}$ and $\frac{d y}{d x}=\frac{1}{4}$. Using the result of (1) in (1), we have

$$
\begin{aligned}
\int_{0}^{\infty} y^{\frac{5}{2}} e^{-4 y} d y & =\int_{0}^{\infty}\left(\frac{x}{4}\right)^{\frac{5}{2}} e^{-x} \cdot \frac{1}{4} d x \\
& =\frac{1}{128} \int_{0}^{\infty} x^{\frac{7}{2}-1} e^{-x} d x \\
& =\frac{1}{128} \Gamma\left(\frac{7}{2}\right) \\
& =\frac{1}{128} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right) .
\end{aligned}
$$

For

$$
\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} x^{-\frac{1}{2}} e^{-x} d x
$$

letting $x=z^{2}$, since $\frac{d x}{d z}=2 z$, we have

$$
\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} z^{-1} e^{-z^{2}} \cdot 2 z d z=2 \int_{0}^{\infty} e^{-z^{2}} d z=\sqrt{\pi}
$$

Therefore, we obtain

$$
\int_{0}^{1} t^{3}\left(\log _{e} \frac{1}{t}\right)^{\frac{5}{2}} d t=\frac{1}{128} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi}=\frac{15 \sqrt{\pi}}{1024} .
$$

(Answer) $\frac{15 \sqrt{\pi}}{1024}$

$$
p=\left(\begin{array}{l}
\frac{a}{\sqrt{3+2 \sqrt{3} \sin A}} \\
\frac{b}{\sqrt{3+2 \sqrt{3} \sin B}} \\
\frac{c}{\sqrt{2+2}}
\end{array}\right) \text { and } \boldsymbol{q}=\left(\begin{array}{l}
\sqrt{3+2 \sqrt{3} \sin A} \\
\sqrt{3+2 \sqrt{3} \sin B} \\
\sqrt{3+2 \sqrt{3} \sin C}
\end{array}\right) .
$$

Since $-1 \leq \frac{\boldsymbol{p} \cdot \boldsymbol{q}}{|\boldsymbol{p}||\boldsymbol{q}|} \leq 1$ for the inner product $\boldsymbol{p} \cdot \boldsymbol{q}$, we have

$$
|\boldsymbol{p}|^{2}|\boldsymbol{q}|^{2} \geq(\boldsymbol{p} \cdot \boldsymbol{q})^{2} .
$$

Since

$$
\begin{aligned}
& (\boldsymbol{p} \cdot \boldsymbol{q})^{2}=(a+b+c)^{2}=9 \\
& |\boldsymbol{p}|^{2}=T \\
& |\boldsymbol{q}|^{2}=9+2 \sqrt{3}(\sin A+\sin B+\sin C),
\end{aligned}
$$

we have

$$
T \geq \frac{9}{9+2 \sqrt{3}(\sin A+\sin B+\sin C)} .
$$

Here, for $f(x)=\sin x$, since $f^{\prime}(x)=\cos x$ and $f^{\prime \prime}(x)=-\sin x, f^{\prime \prime}(x)<0$ for $0<x<\pi$, which implies that the function $f(x)$ is concave down.
Since the values of A, B and C are all positive real numbers less than π, by Jensen's inequality, we have

$$
\sin A+\sin B+\sin C \leq 3 \sin \frac{A+B+C}{3}=3 \sin \frac{\pi}{3}=\frac{3 \sqrt{3}}{2} .
$$

It follows that

$$
\frac{9}{9+2 \sqrt{3}(\sin A+\sin B+\sin C)} \geq \frac{9}{9+2 \sqrt{3} \cdot \frac{3 \sqrt{3}}{2}}=\frac{1}{2} .
$$

Therefore, we obtain $T \geq \frac{1}{2}$.
For equilateral triangle $\triangle \mathrm{ABC}$ with sides of length 1 , since

$$
a=b=c=1, \quad A=B=C=\frac{\pi}{3}
$$

and $\sin A=\sin B=\sin C=\frac{\sqrt{3}}{2}$, the value of T is

$$
\frac{1}{3+2 \sqrt{3} \cdot \frac{\sqrt{3}}{2}} \cdot 3=\frac{1}{2} .
$$

Therefore, the minimum value of T is $\frac{1}{2}$.
(Answer) $\frac{1}{2}$

From the result, the number of strikes is 30% of the total and the number of spares is 20% of the total. Hence, the table shows the expected numbers of strikes and spares.
Note that the test statistic follows, approximately, a χ^{2}-distribution with degrees of freedom
$(3-1) \cdot(3-1)=4$.
The test value is

	A	B	C	Total
Strike	30	36	24	90
Spare	20	24	16	60
Other	50	60	40	150
Total	100	120	80	300

$$
\begin{aligned}
T= & \frac{(27-30)^{2}}{30}+\frac{(45-36)^{2}}{36}+\frac{(18-24)^{2}}{24}+\frac{(18-20)^{2}}{20}+\frac{(18-24)^{2}}{24} \\
& +\frac{(24-16)^{2}}{16}+\frac{(55-50)^{2}}{50}+\frac{(57-60)^{2}}{60}+\frac{(38-40)^{2}}{40} \\
= & 10.5 .
\end{aligned}
$$

Using the 0.05 column and the row corresponding to the degrees of freedom 4 , we have 9.4877 , which is less than the value of T. Therefore, T is in the rejection region. It follows that H_{0} is rejected.
(Answer) H_{0} is rejected
(1) The set of all positive integers \mathbf{N} is divided into the following three sets.

$$
\begin{aligned}
& A=\{2 k \mid k \text { is a positive integer }\}=\{2,4,6,8,10,12, \ldots\}, \\
& B=\{4 k+1 \mid k \text { is an integer greater than or equal to } 0\}=\{1,5,9, \ldots\}, \\
& C=\{4 k+3 \mid k \text { is an integer greater than or equal to } 0\}=\{3,7,11, \ldots\} .
\end{aligned}
$$

(i) For m that is an element of A, from (I), if $m=2$, then $n=3$. It follows that as m is increased by $2, m=4,6,8, \ldots, n$ is increased by 3 . Hence, the possible values of $n=f(m)$ are all positive integers that are divisible by 3 .
(ii) For m that is an element of B, from (II), if $m=1$, then $n=1$. It follows that as m is increased by $4, m=5,9,13, \ldots, n$ is increased by 3 . Hence, the possible values of $n=f(m)$ are all positive integers that leave a remainder of 1 when divided by 3 .
(iii) For m that is an element of C, from (III), if $m=3$, then $n=2$. It follows that as m is increased by $4, m=7,11,15, \ldots, n$ is increased by 3 . Hence, the possible values of $n=f(m)$ are all positive integers that leave a remainder of 2 when divided by 3 .

From (i), (ii) and (iii), since there exists a positive integer m such that $n=f(m)$ for all positive integers n, the mapping f is surjective from \mathbf{N} to \mathbf{N}.

Next, for distinct two positive integers a_{1} and a_{2}, if a_{1} and a_{2} are elements of distinct sets in A, B and C, by definition of mapping f, the remainders when dividing each of $f\left(a_{1}\right)$ and $f\left(a_{2}\right)$ by 3 are distinct. It follows that $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
If a_{1} and a_{2} are elements of set A, letting $a_{1}=2 k_{1}$ and $a_{2}=2 k_{2}$ gives $k_{1} \neq k_{2}$. Hence, $3 k_{1} \neq 3 k_{2}$, that is, $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. In the same way, if a_{1} and a_{2} are elements of set B, we have $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. In the same way, if a_{1} and a_{2} are elements of set C, we have $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
Hence, the mapping f is injective from \mathbf{N} to \mathbf{N}.
Therefore, the mapping f is bijective from \mathbf{N} to \mathbf{N}.
The inverse mappings, denoted by $m=f^{-1}(n)$, of $n=f(m)$ for an integer k^{\prime} are as follows:
(I') If $n=3 k^{\prime}, \quad m=f^{-1}(n)=2 k^{\prime}$.
(II') If $n=3 k^{\prime}+1, \quad m=f^{-1}(n)=4 k^{\prime}+1$.
(III') If $n=3 k^{\prime}+2, \quad m=f^{-1}(n)=4 k^{\prime}+3$.
(2) (Example Answer) Starting with the number 2, the period is 2.

Starting with the number 4 , the period is 5 .
Starting with the number 44 , the period is 12 .

The determinant of $t I-A$, denoted by $\operatorname{det}(t I-A)$, is given by

$$
\begin{aligned}
\operatorname{det}(t I-A) & =\left|\begin{array}{ccc}
t+3 & 3 & 5 \\
-3 & t-3 & -7 \\
-1 & -1 & t-1
\end{array}\right| \\
& =(t+3)(t-3)(t-1)+21+15-\{7(t+3)-9(t-1)-5(t-3)\} \\
& =t^{3}-t^{2}-2 t .
\end{aligned}
$$

By the Cayley-Hamilton theorem, we have

$$
\begin{equation*}
A^{3}-A^{2}-2 A=O, \tag{1}
\end{equation*}
$$

where O is the 3×3 zero matrix.
Letting $Q(x)$ and $a x^{2}+b x+c$ be the quotient and remainder, respectively, when x^{n} is divided by $x^{3}-x^{2}-2 x$, where n is a positive integer and a, b and c are real numbers, we have

$$
\begin{equation*}
x^{n}=\left(x^{3}-x^{2}-2 x\right) Q(x)+a x^{2}+b x+c . \tag{2}
\end{equation*}
$$

Solving the cubic equation $x^{3}-x^{2}-2 x=0$ gives

$$
\begin{aligned}
& x(x+1)(x-2)=0 \\
& x=-1,0,2 .
\end{aligned}
$$

Substituting $x=-1,0,2$, respectively into both sides of (2) gives

$$
\left\{\begin{array}{l}
(-1)^{n}=a-b+c, \\
0=c, \\
2^{n}=4 a+2 b+c,
\end{array}\right.
$$

Solving (3), (4) and (5) gives

$$
a=\frac{2^{n-1}+(-1)^{n}}{3}, b=\frac{2^{n-1}-2 \cdot(-1)^{n}}{3} \text { and } c=0 .
$$

Hence, for a 3×3 square matrix B, we have

$$
A^{n}=\left(A^{3}-A^{2}-2 A\right) B+\frac{2^{n-1}+(-1)^{n}}{3} A^{2}+\frac{2^{n-1}-2 \cdot(-1)^{n}}{3} A .
$$

Using (1), we obtain

$$
A^{n}=\frac{2^{n-1}+(-1)^{n}}{3} A^{2}+\frac{2^{n-1}-2 \cdot(-1)^{n}}{3} A .
$$

Therefore, we have

$$
p_{n}=\frac{2^{n-1}+(-1)^{n}}{3}, q_{n}=\frac{2^{n-1}-2 \cdot(-1)^{n}}{3} \text { and } r_{n}=0 .
$$

(Answer) $p_{n}=\frac{2^{n-1}+(-1)^{n}}{3}, q_{n}=\frac{2^{n-1}-2 \cdot(-1)^{n}}{3}$ and $r_{n}=0$

For the given differential equation

$$
\begin{equation*}
y^{\prime \prime}+6 y^{\prime}+5 y=26 \cos x+25 x \tag{1}
\end{equation*}
$$

first, we solve the corresponding homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+6 y^{\prime}+5 y=0 . \tag{2}
\end{equation*}
$$

The characteristic equation here is $t^{2}+6 t+5=0$. Hence, we have

$$
(t+1)(t+5)=0
$$

$$
t=-5,-1 .
$$

Hence, the general solution of (2) is

$$
y=C_{1} e^{-x}+C_{2} e^{-5 x}
$$

where e is the base of the natural logarithm and C_{1} and C_{2} are arbitrary constants.
Next, letting $y=a \cos x+b \sin x+c x+d$, where a, b, c and d are constants, gives

$$
\begin{aligned}
& y^{\prime}=-a \sin x+b \cos x+c \\
& y^{\prime \prime}=-a \cos x-b \sin x
\end{aligned}
$$

Substituting them into (1) gives

$$
(4 a+6 b) \cos x+(-6 a+4 b) \sin x+5 c x+6 c+5 d=26 \cos x+25 x
$$

Equating the corresponding coefficients, we have

$$
\left\{\begin{array}{l}
4 a+6 b=26, \\
-6 a+4 b=0, \\
5 c=25, \\
6 c+5 d=0
\end{array}\right.
$$

Solving the system of equations (3), (4), (5) and (6) gives

$$
a=2, b=3, c=5 \text { and } d=-6 .
$$

Hence, the general solution of the given differential equation is

$$
y=C_{1} e^{-x}+C_{2} e^{-5 x}+2 \cos x+3 \sin x+5 x-6
$$

Since $y^{\prime}=-C_{1} e^{-x}-5 C_{2} e^{-5 x}-2 \sin x+3 \cos x+5, y(0)=-4$ and $y^{\prime}(0)=12$, we have

$$
\left\{\begin{array}{l}
C_{1}+C_{2}+2-6=-4 \\
-C_{1}-5 C_{2}+3+5=12
\end{array}\right.
$$

Solving the system of equations (7) and (8) gives

$$
C_{1}=1 \text { and } C_{2}=-1
$$

Therefore, the solution of the differential equation is
$y=e^{-x}-e^{-5 x}+2 \cos x+3 \sin x+5 x-6$.
(Answer) $y=e^{-x}-e^{-5 x}+2 \cos x+3 \sin x+5 x-6$

