1st Kyu Section 2: Application Test Answer

1-2-1

1 (1) (Answer) 1932

(2) For the equation
22730 -1932b =1,

we find one pair of positive integers a and b that satisfy the equation as follows:
Since

2273=1932-1+341

1932 =341-5+227

341=227-1+114

227=114-1+113

114=113-1+1,

we have

1=114-113-1
=114—-(227-114-1)-1
=227-(-1)+114-2
=227-(-1)+(341-227-1)-2
=341.2+227-(=3)
=341-2+(1932-341-5)-(-3)
=1932-(-3)+341-17
=1932-(=3)+(2273-1932-1)-17
=2273-17-1932-20.

Hence, the pair of a =17 and b=20 is one pair of integer solution.
Since 5 and ¢(2021) (=1932) are relatively prime, we have

52273a — 51932b+1

(Sa )2273 — (5¢(2021) )b . 5
(5°)*” =5 (mod 2021).
Since
5a _ 510 . 57
=153-1327 (mod 2021)
=931 (mod2021),

we obtain

z=931.

(Answer) x =931
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1) © re+n= I: z'e “dx = [—wte_" J: + tj: e dx = tI'(t).

@ Since I'(1) =I e *dx =[—e*f T -1,
0 0
using @ for a positive integer n, we have

I'n+)=nl'(n)=n(n-DI'(n-1)=...=n!T'(1)=nl

. 1 .
(2) Letting y =log, 7’ since t=¢e* and at _ —e ¥, we have

dy

1 1 % 0 5 o 3
I t (loge EJ dt =J. ey (e )dy =I y2e dy.
0 © 0

1 . .
Letting x =4y, we have y =§ and dy =1 Using the result of D in (1), we have

dx

5

© é 0 1
2674 :j Ty A |
.[0 ye y 0 (4) € 4 o

. . dz
letting =2, since o =2z, we have
2z

F(lj = sz"e”‘2 2zdz = 2one*z2 dz= \/;
2 0 0

Therefore, we obtain

5
! 1)2 1 531 ~ 15Jx
t3 10 — dt:— ....... T = .
L ( getj 128 2 2 2 1024

0—->1
o —0

[ |~

0>

==

0>

0>

Ml

0>

(Answer)

15V7
1024

The Mathematics Certification Institute of Japan




1—2-3

Let
. *
\/3+2\/§sinA \/3+2\/§sinA
b
p=| ———- | and q=| 3+23sinB
\/3+2x/§sinB
¢ V3+23sinC
\/3+2x/§sinC
. _ pq .
Since —1< <1 for the inner product p-q, we have
o] lq|
Ip|” la]” 2 (@)
Since
(p-9) =(a+b+c)’ =9,
p|* =T,
|q|2=9+2\/§(sinA+sinB+sinC),
we have

T> 2 .
9+23(sin A +sin B +sinC)

Here, for f(z)=sinz, since f'(x)=cosz and f"(x)=-sinz, f'(x)<0 for 0<zx <z, whichimplies
that the function f(z) is concave down.

Since the valuesof A, B and C are all positive real numbers less than 7, by Jensen’s inequality, we
have

A+B+C ﬁ_ﬁ
—_— =

3

sin A +sin B +sinC < 3sin 3sin

It follows that

9 9 1

> =—.

; ; ; >
9+2\/§(smA+smB+smC’) 9+2\/§.3\2/§

Therefore, we obtain T > % .

For equilateral triangle & ABC with sides of length 1, since
a=b=c=1, A=B=C=%

and sinA=sinB=sinC = g , the value of T is
;\/5 3=

Therefore, the minimum value of T is %

(Answer) %
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From the result, the number of strikes is 30% of the

total and the number of spares is 20% of the total. A B C Total
Hence, the table shows the expected numbers of .

strikes and spares. Strike 30 36 24 90
Note that the test statistic follows, approximately, a Spare 20 24 16 60
7y’ -distribution with degrees of freedom

G-1)-G-1)=4. Other 50 60 40 150
The test value is Total 100 120 80 300

~(27-30)° . (45-36)° . (18 -24)° . (18 -20)° . (18 —24)°
30 36 24 20 24
2 2 2 _ 2
L (24-16)°  (55-50)"  (57-60)  (38-40)
16 50 60 40
=10.5.

T

Using the 0.05 column and the row corresponding to the degrees of freedom 4, we have 9.4877, which is
less than the value of T . Therefore, T' is in the rejection region. It follows that H, is rejected.

(Answer) H, isrejected
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(1) The set of all positive integers N is divided into the following three sets.

A={2k | k is apositive integer } ={ 2, 4, 6,8,10,12,...},
B={4k+1 | k is an integer greater than orequal to 0 } ={1,5,9, ...},
C={4k+3 | k is an integer greater than or equal to 0 } ={3,7,11,... }.
(1) For m thatis an element of A, from (1), if m =2, then n=3.1It follows thatas m is

increased by 2, m=4,6,8,..., n isincreased by 3. Hence, the possible values of n = f(m) are
all positive integers that are divisible by 3.

(ii) For m thatis an element of B, from (1), if m=1,then n=1.1t follows thatas m is
increased by 4, m=5,9,13,..., n isincreased by 3. Hence, the possible values of n = f(m) are
all positive integers that leave a remainder of 1 when divided by 3.

(iii) For m that is an element of C', from (III), if m =3, then n=2.It follows thatas m is
increased by 4, m=7,11,15,..., n isincreased by 3. Hence, the possible values of n = f(m)
are all positive integers that leave a remainder of 2 when divided by 3.

From (i), (ii) and (iii), since there exists a positive integer m such that n = f(m) for all positive integers

n, the mapping f issurjective from N to N.

Next, for distinct two positive integers a, and a,,if a, and a, areelements of distinctsetsin A, B
and C, by definition of mapping f, the remainders when dividing each of f(a,) and f(a,) by 3 are
distinct. It follows that f(a,) # f(a,) .

If a, and a, areelementsofset A,letting a, =2k and a, =2k, gives k, #k,.Hence, 3k #3k,,
thatis, f(a,)# f(a,).In the same way, if a, and a, areelementsofset B, wehave f(a,)# f(a,).In
the same way, if a, and a, are elements of set C', we have f(a,)# f(a,).

Hence, the mapping f is injective from N to N.

Therefore, the mapping f is bijective from N to N.

The inverse mappings, denoted by m = f'(n), of n= f(m) foraninteger k' are as follows:
(I')If n=3K", m=f"(n)=2k".
(I')If n=3k'+1, m=f"(n)=4k"+1.

(I If n=3k'+2, m=f"(n)=4k"+3.

(2) (Example Answer) Starting with the number 2, the period is 2.
Starting with the number 4, the period is 5.
Starting with the number 44, the period is 12.
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The determinant of ¢/ — A, denoted by det (¢ — A), is given by

t+3 3 5
det(tI -A)=| -3 t-3 -7
-1 -1 -1
=(t+3)(t=3)(t -1 +21+15—{7(t+3) - 9(t—1) - 5(t - 3)}
=t —t? -2t

By the Cayley-Hamilton theorem, we have
A-A-24=0, @

where O isthe 3x3 zero matrix.
Letting Q(z) and az’ +bz+c be the quotient and remainder, respectively, when 2" is divided by

z’ —x* —2x, where m isa positive integerand a, b and c are real numbers, we have
" =(x' -2’ -22)Q(x) +ax’ +br+c. @

Solving the cubic equation z’ —z° —2z=0 gives
Hz+1)(z-2)=0
x=-1, 0, 2.

Substituting z =-1, 0, 2, respectively into both sides of @ gives

-D*=a-b+c, ©®
0=c, @
2"=4a+2b+c. ®

Solving ®, @ and ® gives

n-1 _1\* n-1 _»n 1\
a=2 +3( D , b=2 i( D and ¢=0.

Hence, fora 3x3 square matrix B, we have

2" 4 (=1 A, Y N

A" =(A*-A*-2A)B+ A+ A.

Using (D, we obtain
n-1 _1\n n-1 _ an
PR o) PN e M e ) Y
3
Therefore, we have
2" (=" 2" 2. (=)
= - =————~ ~ and r =0.
pTL 3 qTL 3 n
n-1 _1\" n-1 _ _1\"
(Answer) p, = 2 +3( D , q, = 2 i =D and 7, =0
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For the given differential equation

y"+6y' +5y=26cosz+25z, @

first, we solve the corresponding homogeneous equation

y'+6y +5y=0. @

The characteristic equation here is ¢* + 6t +5 =0 . Hence, we have

E+D(E+5)=0
t=-5 —-1.

Hence, the general solution of @ is
y=Ce " +Ce,

where e is the base of the natural logarithm and C, and C, are arbitrary constants.
Next, letting y =acosx+bsinx+cx+d,where a, b, ¢ and d are constants, gives

y' =—asinz+bcosz +c,

"

y" =—acosz —bsinz.

Substituting them into D gives
(4a + 6b)cosz + (—6a +4b)sinx + Scx + 6¢ + 5d =26 cos x + 25z.
Equating the corresponding coefficients, we have
da+6b=26,
—6a+4b=0, @
S5c=125, ®
6c+5d=0. ©
Solving the system of equations 3), @, & and ® gives
a=2, b=3, ¢=5 and d=-6.
Hence, the general solution of the given differential equation is
y=Ce” +Ce”" +2cosx +3sinz + 5z —6.
Since y'=-Ce™* —5C, e —2sinz +3cosz+5, y(0)=-4 and 7'(0)=12, we have
C,+C,+2-6=-4, @
—-C,-5C,+3+5=12.
Solving the system of equations (7)) and gives
C,=1 and C,=-1.
Therefore, the solution of the differential equation is

-z

y=e*—e > +2cosx+3sinz+5z—6.

(Answer) y=e* —e>* +2cosz+3sinz+5x—6
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