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１ (1) (Answer) 1932 

(2) For the equation 

2273 1932 1a b− = , 

we find one pair of positive integers a  and b  that satisfy the equation as follows: 
Since 

1 341
1932 341 5 227
341 227 1 114
227 114 1 113
114 113 1 1,

2273 1932 ⋅ +
= ⋅ +
= ⋅ +
= ⋅

=

+
= ⋅ +

 

we have 

1
114 (227 114 1) 1
227 ( 1) 114 2
227 ( 1) (341 227 1) 2
341 2 227 ( 3)
341 2 (1932 341 5) ( 3)
1932 ( 3) 341 17
1932 ( 3) (2273 1932 1) 17
2273 17 1932 20.

1 114 113 ⋅
= − − ⋅ ⋅
= ⋅ − + ⋅
= ⋅ − + − ⋅ ⋅
= ⋅ + ⋅ −
= ⋅ + − ⋅ ⋅ −
= ⋅ − + ⋅
= ⋅ − + −

−

−

⋅ ⋅
⋅ ⋅

=

=

 

Hence, the pair of 17a =  and 20b =  is one pair of integer solution. 
Since 5 and (2021) ( 1932)ϕ =  are relatively prime, we have 

2273 1932 1

2273 (2021)

2273

5 5
(5 ) (5 )
(5 ) 5 (mod 2021)

5
.

a b

a

a

b

ϕ

+=

= ⋅

≡

 

Since 
10 75

1327 (mod 2021)
931 (mod 2021),

5 5
153

a =
≡

⋅
⋅

≡
 

we obtain 

931x = . 

(Answer) 931x =  



１－２－２ 

2 (1) ① 
00

1

0
Γ( 1) Γ( ).t x t x t xt x e dx x e t x e dx t t− − −

∞ ∞ −
∞

 + = = − + = ∫ ∫  

② Since 
00

Γ(1) 1x xe dx e− −
∞ ∞

 = = − = ∫ , 

using ① for a positive integer n , we have 

Γ( 1) Γ( ) ( 1)Γ( 1) !Γ(1) !.n n n n n n n n+ = = − − = = =  

(2) Letting g 1lo ey
t

= , since yt e−=  and ydt
e

dy
−= − , we have 

5
1 02 5 5

3 42

0 0

3 2log ( ) .1 y y y
et dt e y e dy

t
y e dy− − −

∞

∞

  = − = 
 ∫ ∫ ∫  

Letting 4x y= , we have 
4

y
x

=  and 1
4

dy

dx
= . Using the result of ① in (1), we have 

5
5 242

7 1

0

2

0

0

1
4

1
128

1 7Γ
128 2

1 5 3 1 1Γ .
2

4

128 2 2 2

y x

x

x
y xe

e

de

dxx

dy− −

∞ − −

∞ ∞

 ⋅

 =  
 

 = ⋅ ⋅

 = 
 

=

⋅  
 

∫

∫ ∫

 

For 
1
2

0

1Γ ,
2

xx e dx
−∞

−  = 
  ∫  

letting 2x z= , since 2dx
z

dz
= , we have 

2 21

0 0
.1Γ 2

2
2z zzz e e dzdz π

∞
−

∞
− −  = = = 

 
⋅∫ ∫  

Therefore, we obtain 

5

3
1 2

0

1 1 5 3 1 15 .
128 2 2 2 0

l
1

og
24et

t
dt

ππ  =  ⋅ =


⋅ ⋅ ⋅
∫  

 
 
 

0 1
0

t

y

→
∞→

 

 
 

0
0

y

x

→∞
→∞

 

 
 
 
 
 
 
 
 
 

0
0

x

z

→∞
→∞

 

(Answer) 15
1024

π  
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１－２－３ 
  

3 
Let 

3 sin

3 sin

3 s2 i

3 2

3 2

3 n

b

A

B

c

C

a 
 
 +
 
 =
 + 
 
  + 

p  and 

3 2

3 2

3 2

3 sin

3 sin

3 sin

A

B

C

 + 
 = + 
  + 

q . 

Since 1 1− ≤
⋅

≤
p

p q

q
 for the inner product ⋅p q , we have 

2 2 2( )≥ ⋅q p qp . 

Since  

2 2( ) ( ) 9a b c+ + =⋅ =qp , 

2
T=p , 

2 3(sin sin2 si )9 nA B C+ += +q , 

we have 

3(sin sin2 i9 s )
9

nA B C
T

+ +
≥

+
. 

Here, for ( ) sinf x x= , since ( ) cosf x x′ =  and ( ) sinf x x′′ = − , ( ) 0f x′′ <  for 0 x π< < , which implies 
that the function ( )f x  is concave down. 
Since the values of A , B  and C  are all positive real numbers less than π , by Jensen’s inequality, we 
have 

.sin sin sin 3sin 33sin
3

3
3 2

A B C
A B C

π+ +
+ + ≤ ==  

It follows that 

1 .
23(sin sin si

9 9
9 2 9 2n ) 3 33

2
A B C

≥ =
+

+
+ +

⋅
 

Therefore, we obtain 1
2

T ≥ . 

For equilateral triangle △ABC with sides of length 1, since 

1a b c= = = , 
3

A B C
π

= = =  

and sin sin sin
2
3

A B C= = = , the value of T  is 

13 .
233

2

1

3 2
⋅ =

⋅+
 

Therefore, the minimum value of T  is 1
2

. 

(Answer) 1
2
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１－２－４ 

4 
From the result, the number of strikes is 30% of the 
total and the number of spares is 20% of the total. 
Hence, the table shows the expected numbers of 
strikes and spares. 
Note that the test statistic follows, approximately, a 

2χ -distribution with degrees of freedom 
(3 1) (3 1) 4⋅− − = . 
The test value is 

 
 A B C Total 

Strike 30 36 24 90 

Spare 20 24 16 60 

Other 50 60 40 150 

Total 100 120 80 300 
 

2 2 2 2 2

2 2 2 2

(27 30) (45 36) (18 24) (18 20) (18 24)
30 36 24 20 24

(24 16) (55 50) (57 60) (38 40)
16 50 60 40

10.5.

T
− − − − −

= + + + +

− − − −
+ + + +

=

 

Using the 0.05 column and the row corresponding to the degrees of freedom 4, we have 9.4877, which is 
less than the value of T . Therefore, T  is in the rejection region. It follows that 0H  is rejected. 

(Answer) 0H  is rejected 
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5 
(1) The set of all positive integers N  is divided into the following three sets. 

A = { 2k k  is a positive integer } { 2, 4, 6, 8, 10, 12, }=  , 
B = { 4 1k k+  is an integer greater than or equal to 0 } { 1, 5, 9, }=  , 
C = { 4 3k k+  is an integer greater than or equal to 0 } { 3, 7, 11, }=  . 

(i) For m  that is an element of A , from (Ⅰ), if 2m = , then 3n = . It follows that as m  is 
increased by 2, 4, 6, 8,m =  , n  is increased by 3. Hence, the possible values of ( )n f m=  are 
all positive integers that are divisible by 3.  

(ii) For m  that is an element of B , from (Ⅱ), if 1m = , then 1n = . It follows that as m  is 
increased by 4, 5, 9, 13,m =  , n  is increased by 3. Hence, the possible values of ( )n f m=  are 
all positive integers that leave a remainder of 1 when divided by 3.  

(iii) For m  that is an element of C , from (Ⅲ), if 3m = , then 2n = . It follows that as m  is 
increased by 4, 7, 11, 15,m =  , n  is increased by 3. Hence, the possible values of ( )n f m=  
are all positive integers that leave a remainder of 2 when divided by 3.  

From (i), (ii) and (iii), since there exists a positive integer m  such that ( )n f m=  for all positive integers 
n , the mapping f  is surjective from N  to N . 

Next, for distinct two positive integers 1a  and 2a , if 1a  and 2a  are elements of distinct sets in A , B  
and C , by definition of mapping f , the remainders when dividing each of 1( )f a  and 2( )f a  by 3 are 
distinct. It follows that 1 2( ) ( )f a f a≠ . 
If 1a  and 2a  are elements of set A , letting 1 12a k=  and 2 22a k=  gives 1 2k k≠ . Hence, 1 23 3k k≠ , 
that is, 1 2( ) ( )f a f a≠ . In the same way, if 1a  and 2a  are elements of set B , we have 1 2( ) ( )f a f a≠ . In 
the same way, if 1a  and 2a  are elements of set C , we have 1 2( ) ( )f a f a≠ . 
Hence, the mapping f  is injective from N  to N . 

Therefore, the mapping f  is bijective from N  to N . 

The inverse mappings, denoted by 1( )m f n−= , of ( )n f m=  for an integer k ′  are as follows: 

( ′Ⅰ ) If 3n k ′= , 1( ) 2m f n k− ′= = . 

( ′Ⅱ ) If 3 1n k ′= + , 1( ) 4 1m f n k− ′= = + . 

( ′Ⅲ ) If 3 2n k ′= + , 1( ) 4 3m f n k− ′= = + . 

(2) (Example Answer) Starting with the number 2, the period is 2.  
Starting with the number 4, the period is 5.  
Starting with the number 44, the period is 12. 
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6 
The determinant of tI A− , denoted by det ( )tI A− , is given by 

3 2

3 3 5
det ( ) 3 3 7

1 1 1
( 3)( 3)( 1) 21 15 {7( 3) 9( 1) 5( 3)}

2 .

t

tI A t

t

t t t t t t

t t t

+
− = − − −

− − −

= + − − + + − + − − − −

= − −

 

By the Cayley-Hamilton theorem, we have 

3 2 2 ,A A A O− − =    ① 

where O  is the 3 3×  zero matrix. 
Letting ( )Q x  and 2ax bx c+ +  be the quotient and remainder, respectively, when nx  is divided by 

3 2 2x x x− − , where n  is a positive integer and a , b  and c  are real numbers, we have 

3 2 2( 2 ) ( )nx x x x Q x ax bx c= − − + + + .   ② 

Solving the cubic equation 3 2 2 0x x x− − =  gives 

( 1)( 2) 0
1, 0, 2.

x x x

x

+ − =
= −

 

Substituting 1, 0, 2x = − , respectively into both sides of ② gives 

( 1) ,
0 ,
2 4 2 .

n

n

a b c

c

a b c

 − = − +


=
 = + +

③

④

⑤

 

Solving ③, ④ and ⑤ gives 

12 ( 1)
3

n n

a
− + −

= , 
12 2

3
( 1)n n

b
− ⋅ −−

=  and 0c = . 

Hence, for a 3 3×  square matrix B , we have 

1 1
3 2 22 ( 1) 2 2( 2 ) .

3
( 1

3
)n n n n

nA A A A B A A
− −

+
⋅− −+ −

= − − +  

Using ①, we obtain 

1 1
22 ( 1) 2 2 .

3 3
( 1)n n n n

nA A A
− −+ − − −

=
⋅

+  

Therefore, we have 
12 ( 1)

3

n n

np
− + −

= , 
12 2

3
( 1)n n

nq
− ⋅− −

=  and 0nr = . 

(Answer) 
12 ( 1)

3

n n

np
− + −

= , 
12 2

3
( 1)n n

nq
− ⋅− −

=  and 0nr =  
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7 
For the given differential equation 

6 5 26cos 25y y y x x′′ ′+ + = + ,   ① 

first, we solve the corresponding homogeneous equation 

6 5 0y y y′′ ′+ + = .   ② 
The characteristic equation here is 2 6 5 0t t+ + = . Hence, we have 

( 1)( 5) 0
5, 1.

t t

t

+ + =
= − −

 

Hence, the general solution of ② is 

5
1 2

x xy C e C e− −= + , 

where e  is the base of the natural logarithm and 1C  and 2C  are arbitrary constants. 
Next, letting cos siny a x b x cx d= + + + , where a , b , c  and d  are constants, gives 

sin cos ,y a x b x c′ = − + +  
cos sin .y a x b x′′ = − −  

Substituting them into ① gives 

(4 6 )cos ( 6 4 )sin 5 6 5 26cos 25 .a b x a b x cx c d x x+ + − + + + + = +  

Equating the corresponding coefficients, we have 

4 6 26,
6 4 0,

5 25,
6 5 0.

a b

a b

c

c d

+ =
 − + =


=
 + =

③

④

⑤

⑥

 

Solving the system of equations ③, ④, ⑤ and ⑥ gives 

2a = , 3b = , 5c =  and 6d = − . 

Hence, the general solution of the given differential equation is 

5
1 2 2cos 3sin 5 6.x xy C e C e x x x− −= + + + + −  

Since 5
1 25 2sin 3cos 5x xy C e C e x x− −′ = − − − + + , (0) 4y = −  and (0) 12y′ = , we have 

1 2

1 2

2 6 4,
5 3 5 12.

C C

C C

+ + − = −

− − + + =

⑦

⑧
 

Solving the system of equations ⑦ and ⑧ gives 

1 1C =  and 2 1.C = −  

Therefore, the solution of the differential equation is 

5 2cos 3sin 5 6.x xy e e x x x− −= − + + + −  

(Answer) 5 2cos 3sin 5 6x xy e e x x x− −= − + + + −  
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