```
(1) (Answer) 1932
1
         (2) For the equation
                2273a - 1932b = 1,
         we find one pair of positive integers a and b that satisfy the equation as follows:
         Since
               2273 = 1932 \cdot 1 + 341
               1932 = 341 \cdot 5 + 227
               341 = 227 \cdot 1 + 114
               227 = 114 \cdot 1 + 113
               114 = 113 \cdot 1 + 1,
         we have
               1 = 114 - 113 \cdot 1
                 =114 - (227 - 114 \cdot 1) \cdot 1
                 = 227 \cdot (-1) + 114 \cdot 2
                 = 227 \cdot (-1) + (341 - 227 \cdot 1) \cdot 2
                 = 341 \cdot 2 + 227 \cdot (-3)
                 = 341 \cdot 2 + (1932 - 341 \cdot 5) \cdot (-3)
                 =1932 \cdot (-3) + 341 \cdot 17
                 =1932 \cdot (-3) + (2273 - 1932 \cdot 1) \cdot 17
                 = 2273 \cdot 17 - 1932 \cdot 20.
         Hence, the pair of a = 17 and b = 20 is one pair of integer solution.
         Since 5 and \varphi(2021) (=1932) are relatively prime, we have
               5^{2273a} = 5^{1932b+1}
               (5^a)^{2273} = (5^{\varphi(2021)})^b \cdot 5
               (5^a)^{2273} \equiv 5 \pmod{2021}.
        Since
               5^a = 5^{10} \cdot 5^7
                   \equiv 153 \cdot 1327 \pmod{2021}
                   \equiv 931 (mod 2021),
         we obtain
               x = 931.
                                                                                                                           (Answer) x = 931
```

1 - 2 - 2

$$\begin{array}{l} 2 \\ (1) \textcircled{1} (1) (1) \Gamma(t+1) = \int_{0}^{\pi} x^{t} e^{-x} dx = \left[-x^{t} e^{-x} \right]_{0}^{\pi} + t \int_{0}^{\pi} x^{t-t} e^{-x} dx = d\Gamma(t). \\ (2) \text{ Since } \Gamma(1) = \int_{0}^{\pi} e^{-x} dx = \left[-e^{-x} \right]_{0}^{\pi} = 1, \\ \text{ using } (1) \text{ for a positive integer } n, \text{ we have} \\ \Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1) = \dots = n!\Gamma(1) = n!. \\ \end{array}$$

$$\begin{array}{l} (2) \text{ Letting } y = \log_{1} \frac{1}{t}, \text{ since } t = e^{-y} \text{ and } \frac{dt}{dy} = -e^{-y}, \text{ we have} \\ \int_{0}^{\pi} t^{2} \left[\log_{1} \frac{1}{t} \right]_{0}^{\frac{1}{2}} dt = \int_{-\infty}^{x} e^{-xy} \frac{3}{2}(-e^{-y}) dy = \int_{0}^{\pi} y^{\frac{3}{2}} e^{-4y} dy. \\ \text{ Letting } x = 4y, \text{ we have } y = \frac{x}{4} \text{ and } \frac{dy}{dx} = \frac{1}{4}. \text{ Using the result of } (1) \text{ in } (1), \text{ we have} \\ \int_{0}^{\pi} y^{\frac{3}{2}} e^{-4y} dy = \int_{0}^{\pi} \left(\frac{x}{4} \right)^{\frac{3}{2}} e^{-x} \cdot \frac{1}{4} dx \\ &= \frac{1}{128} \int_{0}^{\pi} \frac{x^{\frac{3}{2}}}{2^{\frac{3}{2}} - e^{-x}} dx \\ &= \frac{1}{128} \int_{0}^{\pi} \frac{x^{\frac{3}{2}}}{2^{\frac{3}{2}} - e^{-x}} dx \\ &= \frac{1}{128} \int_{0}^{\pi} \frac{x^{\frac{3}{2}}}{2^{\frac{3}{2}} - e^{-x}} dx \\ &= \frac{1}{128} \int_{0}^{\pi} \frac{x^{\frac{3}{2}}}{2^{\frac{3}{2}} - e^{-y}} dx \\ &= \frac{1}{128} \int_{0}^{\pi} \frac{x^{\frac{3}{2}}}{2^{\frac{3}{2}} - \frac{1}{2} \Gamma\left(\frac{1}{2}\right). \\ \end{array}$$

3

Let

$$\boldsymbol{p} = \begin{pmatrix} \frac{a}{\sqrt{3} + 2\sqrt{3}\sin A} \\ \frac{b}{\sqrt{3} + 2\sqrt{3}\sin B} \\ \frac{c}{\sqrt{3} + 2\sqrt{3}\sin C} \end{pmatrix} \text{ and } \boldsymbol{q} = \begin{pmatrix} \sqrt{3} + 2\sqrt{3}\sin A \\ \sqrt{3} + 2\sqrt{3}\sin B \\ \sqrt{3} + 2\sqrt{3}\sin C \end{pmatrix}.$$

Since $-1 \le \frac{\boldsymbol{p} \cdot \boldsymbol{q}}{|\boldsymbol{p}| |\boldsymbol{q}|} \le 1$ for the inner product $\boldsymbol{p} \cdot \boldsymbol{q}$, we have $|\boldsymbol{p}|^2 |\boldsymbol{q}|^2 \ge (\boldsymbol{p} \cdot \boldsymbol{q})^2$.

Since

$$(\mathbf{p} \cdot \mathbf{q})^2 = (a+b+c)^2 = 9,$$

 $|\mathbf{p}|^2 = T,$
 $|\mathbf{q}|^2 = 9 + 2\sqrt{3}(\sin A + \sin B + \sin C)$

we have

$$T \ge \frac{9}{9 + 2\sqrt{3}(\sin A + \sin B + \sin C)}$$

Here, for $f(x) = \sin x$, since $f'(x) = \cos x$ and $f''(x) = -\sin x$, f''(x) < 0 for $0 < x < \pi$, which implies that the function f(x) is concave down.

Since the values of A, B and C are all positive real numbers less than π , by Jensen's inequality, we have

$$\sin A + \sin B + \sin C \le 3\sin \frac{A + B + C}{3} = 3\sin \frac{\pi}{3} = \frac{3\sqrt{3}}{2}.$$

It follows that

$$\frac{9}{9+2\sqrt{3}(\sin A + \sin B + \sin C)} \ge \frac{9}{9+2\sqrt{3}\cdot\frac{3\sqrt{3}}{2}} = \frac{1}{2}$$

Therefore, we obtain $T \ge \frac{1}{2}$.

For equilateral triangle $\triangle ABC$ with sides of length 1, since

$$a = b = c = 1$$
, $A = B = C = \frac{\pi}{3}$
and $\sin A = \sin B = \sin C = \frac{\sqrt{3}}{2}$, the value of T is
 $\frac{1}{3 + 2\sqrt{3} \cdot \frac{\sqrt{3}}{2}} \cdot 3 = \frac{1}{2}$.

Therefore, the minimum value of T is $\frac{1}{2}$.

(Answer) $\frac{1}{2}$

5	(1) The set of all positive integers N is divided into the following three sets.
5	$A = \{ 2k \mid k \text{ is a positive integer} \} = \{ 2, 4, 6, 8, 10, 12, \dots \},\$
	$B = \{ 4k+1 \mid k \text{ is an integer greater than or equal to } 0 \} = \{ 1, 5, 9, \dots \},\$
	$C = \{ 4k+3 \mid k \text{ is an integer greater than or equal to } 0 \} = \{ 3, 7, 11, \dots \}.$
	(i) For m that is an element of A , from (I), if $m = 2$, then $n = 3$. It follows that as m is increased by 2, $m = 4, 6, 8,, n$ is increased by 3. Hence, the possible values of $n = f(m)$ are all positive integers that are divisible by 3.
	(ii) For m that is an element of B , from (II), if $m=1$, then $n=1$. It follows that as m is increased by 4, $m=5, 9, 13,, n$ is increased by 3. Hence, the possible values of $n=f(m)$ are all positive integers that leave a remainder of 1 when divided by 3.
	(iii) For m that is an element of C , from (III), if $m = 3$, then $n = 2$. It follows that as m is increased by 4, $m = 7, 11, 15,, n$ is increased by 3. Hence, the possible values of $n = f(m)$ are all positive integers that leave a remainder of 2 when divided by 3.
	From (i), (ii) and (iii), since there exists a positive integer m such that $n = f(m)$ for all positive integers n , the mapping f is surjective from N to N.
	Next, for distinct two positive integers a_1 and a_2 , if a_1 and a_2 are elements of distinct sets in A , B and C , by definition of mapping f , the remainders when dividing each of $f(a_1)$ and $f(a_2)$ by 3 are distinct. It follows that $f(a_1) \neq f(a_2)$.
	If a_1 and a_2 are elements of set A , letting $a_1 = 2k_1$ and $a_2 = 2k_2$ gives $k_1 \neq k_2$. Hence, $3k_1 \neq 3k_2$, that is, $f(a_1) \neq f(a_2)$. In the same way, if a_1 and a_2 are elements of set B , we have $f(a_1) \neq f(a_2)$. In the same way, if a_1 and a_2 are elements of set C , we have $f(a_1) \neq f(a_2)$.
	Hence, the mapping f is injective from \mathbf{N} to \mathbf{N} .
	Therefore, the mapping f is bijective from N to N .
	The inverse mappings, denoted by $m = f^{-1}(n)$, of $n = f(m)$ for an integer k' are as follows:
	(I') If $n = 3k'$, $m = f^{-1}(n) = 2k'$.
	(Π') If $n = 3k' + 1$, $m = f^{-1}(n) = 4k' + 1$.
	(III') If $n = 3k' + 2$, $m = f^{-1}(n) = 4k' + 3$.
	(2) (Example Answer) Starting with the number 2, the period is 2. Starting with the number 4, the period is 5. Starting with the number 44, the period is 12.

The determinant of tI - A, denoted by det(tI - A), is given by

$$det (tI - A) = \begin{vmatrix} t+3 & 3 & 5 \\ -3 & t-3 & -7 \\ -1 & -1 & t-1 \end{vmatrix}$$
$$= (t+3)(t-3)(t-1) + 21 + 15 - \{7(t+3) - 9(t-1) - 5(t-3)\}$$
$$= t^3 - t^2 - 2t.$$

By the Cayley-Hamilton theorem, we have

 $A^3 - A^2 - 2A = O, \qquad (1)$

where O is the 3×3 zero matrix.

Letting Q(x) and $ax^2 + bx + c$ be the quotient and remainder, respectively, when x^n is divided by $x^3 - x^2 - 2x$, where *n* is a positive integer and *a*, *b* and *c* are real numbers, we have

$$x^n = (x^3 - x^2 - 2x)Q(x) + ax^2 + bx + c.$$
 (2)

Solving the cubic equation $x^3 - x^2 - 2x = 0$ gives

$$x(x+1)(x-2) = 0$$

 $x = -1, 0, 2.$

Substituting x = -1, 0, 2, respectively into both sides of 2 gives

$$\begin{cases} (-1)^n = a - b + c, & (3) \\ 0 = c, & (4) \\ 2^n = 4a + 2b + c. & (5) \end{cases}$$

Solving (3), (4) and (5) gives

$$a = \frac{2^{n-1} + (-1)^n}{3}, \ b = \frac{2^{n-1} - 2 \cdot (-1)^n}{3} \text{ and } c = 0.$$

Hence, for a 3×3 square matrix B, we have

$$A^{n} = (A^{3} - A^{2} - 2A)B + \frac{2^{n-1} + (-1)^{n}}{3}A^{2} + \frac{2^{n-1} - 2 \cdot (-1)^{n}}{3}A$$

Using (1), we obtain

$$A^{n} = \frac{2^{n-1} + (-1)^{n}}{3}A^{2} + \frac{2^{n-1} - 2 \cdot (-1)^{n}}{3}A^{2}$$

Therefore, we have

$$p_n = \frac{2^{n-1} + (-1)^n}{3}, \quad q_n = \frac{2^{n-1} - 2 \cdot (-1)^n}{3} \text{ and } r_n = 0.$$

(Answer) $p_n = \frac{2^{n-1} + (-1)^n}{3}, \quad q_n = \frac{2^{n-1} - 2 \cdot (-1)^n}{3} \text{ and } r_n = 0$

The Mathematics Certification Institute of Japan

6

For the given differential equation

 $y'' + 6y' + 5y = 26\cos x + 25x , \qquad (1)$

first, we solve the corresponding homogeneous equation

y'' + 6y' + 5y = 0. (2)

The characteristic equation here is $t^2 + 6t + 5 = 0$. Hence, we have

$$(t+1)(t+5) = 0$$

 $t = -5, -1.$

Hence, the general solution of (2) is

$$y = C_1 e^{-x} + C_2 e^{-5x}$$

where e is the base of the natural logarithm and C_1 and C_2 are arbitrary constants. Next, letting $y = a \cos x + b \sin x + cx + d$, where a, b, c and d are constants, gives

 $y' = -a \sin x + b \cos x + c,$ $y'' = -a \cos x - b \sin x.$

Substituting them into ① gives

 $(4a+6b)\cos x + (-6a+4b)\sin x + 5cx + 6c + 5d = 26\cos x + 25x.$

Equating the corresponding coefficients, we have

$$4a + 6b = 26, \quad (3)$$

- 6a + 4b = 0,
$$(4)$$

5c = 25,
$$(5)$$

6c + 5d = 0.
$$(6)$$

Solving the system of equations (3), (4), (5) and (6) gives

a = 2, b = 3, c = 5 and d = -6.

Hence, the general solution of the given differential equation is

 $y = C_1 e^{-x} + C_2 e^{-5x} + 2\cos x + 3\sin x + 5x - 6.$

Since $y' = -C_1 e^{-x} - 5C_2 e^{-5x} - 2\sin x + 3\cos x + 5$, y(0) = -4 and y'(0) = 12, we have

$$\begin{cases} C_1 + C_2 + 2 - 6 = -4, \quad (7) \\ -C_1 - 5C_2 + 3 + 5 = 12. \quad (8) \end{cases}$$

Solving the system of equations (7) and (8) gives

 $C_1 = 1$ and $C_2 = -1$.

Therefore, the solution of the differential equation is

 $y = e^{-x} - e^{-5x} + 2\cos x + 3\sin x + 5x - 6.$

(Answer) $y = e^{-x} - e^{-5x} + 2\cos x + 3\sin x + 5x - 6$