2nd Kyu Section 2: Application Test

Answer

1	(1) From $x^2 + (a^2 + a + 1)x + a^2 + a < 0$,(1) $(x + a^2 + a)(x + 1) < 0$. If $-a^2 - a = -1$, there is no real number x that satisfies (1). We consider different cases comparing $-a^2 - a$ and -1 . If $-a^2 - a < -1$ (2), the solution of (1) is $-a^2 - a < x < -1$. The condition that the only one integer satisfies this range is $-3 \le -a^2 - a < -2$ (3) The intersection of (2) and (3) is (3). Next, we solve (3), that is, $a^2 + a - 2 > 0$ (4) and $a^2 + a - 3 \le 0$ (5) Since $a^2 + a - 2 = (a + 2)(a - 1)$, the solution of (4) is a < -2, $1 < a$ (4)' Solving $a^2 + a - 3 = 0$ for a gives $a = \frac{-1 \pm \sqrt{13}}{2}$. Thus, the solution of (5) is $\frac{-1 - \sqrt{13}}{2} \le a \le \frac{-1 + \sqrt{13}}{2}$ (5)' Since the solution of (3) is the intersection of (4)' and (5)', we have $\frac{-1 - \sqrt{13}}{2} \le a < -2$, $1 < a \le \frac{-1 + \sqrt{13}}{2}$ (3)'	If $-1 < -a^2 - a$ (6), the solution of (1) is $-1 < x < -a^2 - a$. The condition that the only one integer satisfies this range is $0 < -a^2 - a \le 1$ (7) The intersection of (6) and (7) is (7). Next, we solve (7), that is, $a^2 + a < 0$ (8) and $a^2 + a + 1 \ge 0$ (9) Since $a^2 + a = a(a+1)$, the solution of (8) is -1 < a < 0(8)' Since $a^2 + a + 1 = \left(a + \frac{1}{2}\right)^2 + \frac{3}{4} \ge \frac{3}{4}$, the solution of (9) is all real numbers. Hence the solution of (7) is (8)'. Therefore, the required range is the union of (3)' and (8)', that is, $\frac{-1 - \sqrt{13}}{2} \le a < -2$, $-1 < a < 0$, $1 < a \le \frac{-1 + \sqrt{13}}{2}$. (Answer) $\frac{-1 - \sqrt{13}}{2} \le a < -2$, $-1 < a < 0$, $1 < a \le \frac{-1 + \sqrt{13}}{2}$.
2	Let A be the event $(a-b)(b-c)(c-d)(d-e)(e-f) \neq 0$. Then the event (a-b)(b-c)(c-d)(d-e)(e-f) = 0 is the complement of A, written \overline{A} . The event A is the event that "the numbers facing up from the 2nd to 6th roll are different from each of the previous number."	Thus, $P(A) = \left(\frac{5}{6}\right)^5 = \frac{3125}{7776}$. The required probability is $P(\overline{A}) = 1 - P(A) = \frac{4651}{7776}$. (Answer) $\frac{4651}{7776}$
3	We find the fourth power of $z = a + i$. $z^{2} = (a + i)^{2} = a^{2} - 1 + 2ai$, $z^{4} = (a^{2} - 1 + 2ai)^{2}$ $= (a^{2} - 1)^{2} - 4a^{2} + 4a(a^{2} - 1)i$. Since this is equal to the real number r , $r = (a^{2} - 1)^{2} - 4a^{2} = a^{4} - 6a^{2} + 1$ (1) $a(a^{2} - 1) = 0$ (2) Solving (2), a(a + 1)(a - 1) = 0. Thus, a = 0, -1, 1.	Substituting each value into ①, we have r=1 when $a=0r=-4$ when $a=-1r=-4$ when $a=1(Answer) (a, r) = (0, 1), (-1, -4), (1, -4)$

